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5.5 Similarity and Diagonalization

In Section 3.3 we studied diagonalization of a square matrix A, and found important applications
(for example to linear dynamical systems). We can now utilize the concepts of subspace, basis, and
dimension to clarify the diagonalization process, reveal some new results, and prove some theorems
which could not be demonstrated in Section 3.3.

Before proceeding, we introduce a notion that simplifies the discussion of diagonalization, and
is used throughout the book.

Similar Matrices

Definition 5.11 Similar Matrices
If A and B are n×n matrices, we say that A and B are similar, and write A ∼ B, if
B = P−1AP for some invertible matrix P.

Note that A ∼ B if and only if B = QAQ−1 where Q is invertible (write P−1 = Q). The language of
similarity is used throughout linear algebra. For example, a matrix A is diagonalizable if and only
if it is similar to a diagonal matrix.

If A∼B, then necessarily B∼A. To see why, suppose that B=P−1AP. Then A=PBP−1 =Q−1BQ
where Q = P−1 is invertible. This proves the second of the following properties of similarity (the
others are left as an exercise):

1. A ∼ A for all square matrices A.
2. If A ∼ B, then B ∼ A. (5.2)
3. If A ∼ B and B ∼ A, then A ∼C.

These properties are often expressed by saying that the similarity relation ∼ is an equivalence
relation on the set of n×n matrices. Here is an example showing how these properties are used.

Example 5.5.1

If A is similar to B and either A or B is diagonalizable, show that the other is also
diagonalizable.

Solution. We have A ∼ B. Suppose that A is diagonalizable, say A ∼ D where D is diagonal.
Since B ∼ A by (2) of (5.2), we have B ∼ A and A ∼ D. Hence B ∼ D by (3) of (5.2), so B is
diagonalizable too. An analogous argument works if we assume instead that B is
diagonalizable.

Similarity is compatible with inverses, transposes, and powers:

If A ∼ B then A−1 ∼ B−1, AT ∼ BT , and Ak ∼ Bk for all integers k ≥ 1.
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The proofs are routine matrix computations using Theorem 3.3.1. Thus, for example, if A is
diagonalizable, so also are AT , A−1 (if it exists), and Ak (for each k ≥ 1). Indeed, if A ∼ D where D
is a diagonal matrix, we obtain AT ∼ DT , A−1 ∼ D−1, and Ak ∼ Dk, and each of the matrices DT ,
D−1, and Dk is diagonal.

We pause to introduce a simple matrix function that will be referred to later.

Definition 5.12 Trace of a Matrix
The trace tr A of an n×n matrix A is defined to be the sum of the main diagonal elements
of A.

In other words:
If A =

[
ai j
]

, then tr A = a11 +a22 + · · ·+ann.

It is evident that tr (A+B) = tr A+ tr B and that tr (cA) = c tr A holds for all n×n matrices A and
B and all scalars c. The following fact is more surprising.

Lemma 5.5.1
Let A and B be n×n matrices. Then tr (AB) = tr (BA).

Proof. Write A =
[
ai j
]

and B =
[
bi j
]
. For each i, the (i, i)-entry di of the matrix AB is given as

follows: di = ai1b1i +ai2b2i + · · ·+ainbni = ∑ j ai jb ji. Hence

tr (AB) = d1 +d2 + · · ·+dn = ∑
i

di = ∑
i

(
∑

j
ai jb ji

)

Similarly we have tr (BA) = ∑i(∑ j bi ja ji). Since these two double sums are the same, Lemma 5.5.1
is proved.

As the name indicates, similar matrices share many properties, some of which are collected in
the next theorem for reference.

Theorem 5.5.1
If A and B are similar n×n matrices, then A and B have the same determinant, rank, trace,
characteristic polynomial, and eigenvalues.

Proof. Let B = P−1AP for some invertible matrix P. Then we have

det B = det (P−1) det A det P = det A because det (P−1) = 1/ det P

Similarly, rank B = rank (P−1AP) = rank A by Corollary 5.4.3. Next Lemma 5.5.1 gives

tr (P−1AP) = tr
[
P−1(AP)

]
= tr

[
(AP)P−1]= tr A
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As to the characteristic polynomial,

cB(x) = det (xI −B) = det{x(P−1IP)−P−1AP}
= det{P−1(xI −A)P}
= det (xI −A)
= cA(x)

Finally, this shows that A and B have the same eigenvalues because the eigenvalues of a matrix are
the roots of its characteristic polynomial.

Example 5.5.2

Sharing the five properties in Theorem 5.5.1 does not guarantee that two matrices are

similar. The matrices A =

[
1 1
0 1

]
and I =

[
1 0
0 1

]
have the same determinant, rank,

trace, characteristic polynomial, and eigenvalues, but they are not similar because P−1IP = I
for any invertible matrix P.

Diagonalization Revisited

Recall that a square matrix A is diagonalizable if there exists an invertible matrix P such that
P−1AP = D is a diagonal matrix, that is if A is similar to a diagonal matrix D. Unfortunately, not

all matrices are diagonalizable, for example
[

1 1
0 1

]
(see Example 3.3.10). Determining whether

A is diagonalizable is closely related to the eigenvalues and eigenvectors of A. Recall that a number
λ is called an eigenvalue of A if Ax = λx for some nonzero column x in Rn, and any such nonzero
vector x is called an eigenvector of A corresponding to λ (or simply a λ -eigenvector of A). The
eigenvalues and eigenvectors of A are closely related to the characteristic polynomial cA(x) of A,
defined by

cA(x) = det (xI −A)

If A is n×n this is a polynomial of degree n, and its relationship to the eigenvalues is given in the
following theorem (a repeat of Theorem 3.3.2).

Theorem 5.5.2
Let A be an n×n matrix.

1. The eigenvalues λ of A are the roots of the characteristic polynomial cA(x) of A.

2. The λ -eigenvectors x are the nonzero solutions to the homogeneous system

(λ I −A)x = 0

of linear equations with λ I −A as coefficient matrix.
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Example 5.5.3

Show that the eigenvalues of a triangular matrix are the main diagonal entries.

Solution. Assume that A is triangular. Then the matrix xI −A is also triangular and has
diagonal entries (x−a11), (x−a22), . . . , (x−ann) where A =

[
ai j
]
. Hence Theorem 3.1.4 gives

cA(x) = (x−a11)(x−a22) · · ·(x−ann)

and the result follows because the eigenvalues are the roots of cA(x).

Theorem 3.3.4 asserts (in part) that an n×n matrix A is diagonalizable if and only if it has n
eigenvectors x1, . . . , xn such that the matrix P=

[
x1 · · · xn

]
with the xi as columns is invertible.

This is equivalent to requiring that {x1, . . . , xn} is a basis of Rn consisting of eigenvectors of A.
Hence we can restate Theorem 3.3.4 as follows:

Theorem 5.5.3
Let A be an n×n matrix.

1. A is diagonalizable if and only if Rn has a basis {x1, x2, . . . , xn} consisting of
eigenvectors of A.

2. When this is the case, the matrix P =
[

x1 x2 · · · xn
]

is invertible and
P−1AP = diag (λ1, λ2, . . . , λn) where, for each i, λi is the eigenvalue of A
corresponding to xi.

The next result is a basic tool for determining when a matrix is diagonalizable. It reveals an
important connection between eigenvalues and linear independence: Eigenvectors corresponding to
distinct eigenvalues are necessarily linearly independent.

Theorem 5.5.4
Let x1, x2, . . . , xk be eigenvectors corresponding to distinct eigenvalues λ1, λ2, . . . , λk of an
n×n matrix A. Then {x1, x2, . . . , xk} is a linearly independent set.

Proof. We use induction on k. If k = 1, then {x1} is independent because x1 6= 0. In general,
suppose the theorem is true for some k ≥ 1. Given eigenvectors {x1, x2, . . . , xk+1}, suppose a
linear combination vanishes:

t1x1 + t2x2 + · · ·+ tk+1xk+1 = 0 (5.3)

We must show that each ti = 0. Left multiply (5.3) by A and use the fact that Axi = λixi to get

t1λ1x1 + t2λ2x2 + · · ·+ tk+1λk+1xk+1 = 0 (5.4)

If we multiply (5.3) by λ1 and subtract the result from (5.4), the first terms cancel and we obtain

t2(λ2 −λ1)x2 + t3(λ3 −λ1)x3 + · · ·+ tk+1(λk+1 −λ1)xk+1 = 0
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Since x2, x3, . . . , xk+1 correspond to distinct eigenvalues λ2, λ3, . . . , λk+1, the set {x2, x3, . . . , xk+1}
is independent by the induction hypothesis. Hence,

t2(λ2 −λ1) = 0, t3(λ3 −λ1) = 0, . . . , tk+1(λk+1 −λ1) = 0

and so t2 = t3 = · · · = tk+1 = 0 because the λi are distinct. Hence (5.3) becomes t1x1 = 0, which
implies that t1 = 0 because x1 6= 0. This is what we wanted.

Theorem 5.5.4 will be applied several times; we begin by using it to give a useful condition for
when a matrix is diagonalizable.

Theorem 5.5.5
If A is an n×n matrix with n distinct eigenvalues, then A is diagonalizable.

Proof. Choose one eigenvector for each of the n distinct eigenvalues. Then these eigenvectors are
independent by Theorem 5.5.4, and so are a basis of Rn by Theorem 5.2.7. Now use Theorem 5.5.3.

Example 5.5.4

Show that A =

 1 0 0
1 2 3

−1 1 0

 is diagonalizable.

Solution. A routine computation shows that cA(x) = (x−1)(x−3)(x+1) and so has
distinct eigenvalues 1, 3, and −1. Hence Theorem 5.5.5 applies.

However, a matrix can have multiple eigenvalues as we saw in Section 3.3. To deal with this sit-
uation, we prove an important lemma which formalizes a technique that is basic to diagonalization,
and which will be used three times below.
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Lemma 5.5.2
Let {x1, x2, . . . , xk} be a linearly independent set of eigenvectors of an n×n matrix A,
extend it to a basis {x1, x2, . . . , xk, . . . , xn} of Rn, and let

P =
[

x1 x2 · · · xn
]

be the (invertible) n×n matrix with the xi as its columns. If λ1, λ2, . . . , λk are the (not
necessarily distinct) eigenvalues of A corresponding to x1, x2, . . . , xk respectively, then
P−1AP has block form

P−1AP =

[
diag (λ1, λ2, . . . , λk) B

0 A1

]
where B has size k× (n− k) and A1 has size (n− k)× (n− k).

Proof. If {e1, e2, . . . , en} is the standard basis of Rn, then[
e1 e2 . . . en

]
= In = P−1P = P−1 [ x1 x2 · · · xn

]
=
[

P−1x1 P−1x2 · · · P−1xn
]

Comparing columns, we have P−1xi = ei for each 1 ≤ i ≤ n. On the other hand, observe that

P−1AP = P−1A
[

x1 x2 · · · xn
]
=
[
(P−1A)x1 (P−1A)x2 · · · (P−1A)xn

]
Hence, if 1 ≤ i ≤ k, column i of P−1AP is

(P−1A)xi = P−1(λixi) = λi(P−1xi) = λiei

This describes the first k columns of P−1AP, and Lemma 5.5.2 follows.

Note that Lemma 5.5.2 (with k = n) shows that an n×n matrix A is diagonalizable if Rn has a basis
of eigenvectors of A, as in (1) of Theorem 5.5.3.

Definition 5.13 Eigenspace of a Matrix

If λ is an eigenvalue of an n×n matrix A, define the eigenspace of A corresponding to λ by

Eλ (A) = {x in Rn | Ax = λx}

This is a subspace of Rn and the eigenvectors corresponding to λ are just the nonzero vectors in
Eλ (A). In fact Eλ (A) is the null space of the matrix (λ I −A):

Eλ (A) = {x | (λ I −A)x = 0}= null (λ I −A)

Hence, by Theorem 5.4.2, the basic solutions of the homogeneous system (λ I −A)x = 0 given by
the gaussian algorithm form a basis for Eλ (A). In particular

dim Eλ (A) is the number of basic solutions x of (λ I −A)x = 0 (5.5)



5.5. Similarity and Diagonalization 313

Now recall (Definition 3.7) that the multiplicity11 of an eigenvalue λ of A is the number of times
λ occurs as a root of the characteristic polynomial cA(x) of A. In other words, the multiplicity of λ

is the largest integer m ≥ 1 such that

cA(x) = (x−λ )mg(x)

for some polynomial g(x). Because of (5.5), the assertion (without proof) in Theorem 3.3.5 can be
stated as follows: A square matrix is diagonalizable if and only if the multiplicity of each eigenvalue
λ equals dim [Eλ (A)]. We are going to prove this, and the proof requires the following result which
is valid for any square matrix, diagonalizable or not.

Lemma 5.5.3
Let λ be an eigenvalue of multiplicity m of a square matrix A. Then dim [Eλ (A)]≤ m.

Proof. Write dim [Eλ (A)] = d. It suffices to show that cA(x) = (x−λ )dg(x) for some polynomial
g(x), because m is the highest power of (x−λ ) that divides cA(x). To this end, let {x1, x2, . . . , xd}
be a basis of Eλ (A). Then Lemma 5.5.2 shows that an invertible n×n matrix P exists such that

P−1AP =

[
λ Id B
0 A1

]
in block form, where Id denotes the d×d identity matrix. Now write A′ = P−1AP and observe that
cA′(x) = cA(x) by Theorem 5.5.1. But Theorem 3.1.5 gives

cA(x) = cA′(x) = det (xIn −A′) = det
[
(x−λ )Id −B

0 xIn−d −A1

]
= det [(x−λ )Id] det [(xIn−d −A1)]

= (x−λ )dg(x)

where g(x) = cA1(x). This is what we wanted.

It is impossible to ignore the question when equality holds in Lemma 5.5.3 for each eigenvalue
λ . It turns out that this characterizes the diagonalizable n×n matrices A for which cA(x) factors
completely over R. By this we mean that cA(x) = (x− λ1)(x− λ2) · · ·(x− λn), where the λi are
real numbers (not necessarily distinct); in other words, every eigenvalue of A is real. This need not

happen (consider A =

[
0 −1
1 0

]
), and we investigate the general case below.

Theorem 5.5.6
The following are equivalent for a square matrix A for which cA(x) factors completely.

1. A is diagonalizable.

2. dim [Eλ (A)] equals the multiplicity of λ for every eigenvalue λ of the matrix A.

11This is often called the algebraic multiplicity of λ .
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Proof. Let A be n× n and let λ1, λ2, . . . , λk be the distinct eigenvalues of A. For each i, let mi
denote the multiplicity of λi and write di = dim

[
Eλi(A)

]
. Then

cA(x) = (x−λ1)
m1(x−λ2)

m2 . . .(x−λk)
mk

so m1 + · · ·+mk = n because cA(x) has degree n. Moreover, di ≤ mi for each i by Lemma 5.5.3.
(1) ⇒ (2). By (1), Rn has a basis of n eigenvectors of A, so let ti of them lie in Eλi(A) for each

i. Since the subspace spanned by these ti eigenvectors has dimension ti, we have ti ≤ di for each i by
Theorem 5.2.4. Hence

n = t1 + · · ·+ tk ≤ d1 + · · ·+dk ≤ m1 + · · ·+mk = n

It follows that d1 + · · ·+dk = m1 + · · ·+mk so, since di ≤ mi for each i, we must have di = mi. This
is (2).

(2) ⇒ (1). Let Bi denote a basis of Eλi(A) for each i, and let B = B1 ∪ ·· · ∪Bk. Since each Bi
contains mi vectors by (2), and since the Bi are pairwise disjoint (the λi are distinct), it follows that
B contains n vectors. So it suffices to show that B is linearly independent (then B is a basis of Rn).
Suppose a linear combination of the vectors in B vanishes, and let yi denote the sum of all terms
that come from Bi. Then yi lies in Eλi(A), so the nonzero yi are independent by Theorem 5.5.4 (as
the λi are distinct). Since the sum of the yi is zero, it follows that yi = 0 for each i. Hence all
coefficients of terms in yi are zero (because Bi is independent). Since this holds for each i, it shows
that B is independent.

Example 5.5.5

If A =

 5 8 16
4 1 8

−4 −4 −11

 and B =

 2 1 1
2 1 −2

−1 0 −2

 show that A is diagonalizable but B is

not.

Solution. We have cA(x) = (x+3)2(x−1) so the eigenvalues are λ1 =−3 and λ2 = 1. The
corresponding eigenspaces are Eλ1(A) = span{x1, x2} and Eλ2(A) = span{x3} where

x1 =

 −1
1
0

 , x2 =

 −2
0
1

 , x3 =

 2
1

−1


as the reader can verify. Since {x1, x2} is independent, we have dim (Eλ1(A)) = 2 which is
the multiplicity of λ1. Similarly, dim (Eλ2(A)) = 1 equals the multiplicity of λ2. Hence A is
diagonalizable by Theorem 5.5.6, and a diagonalizing matrix is P =

[
x1 x2 x3

]
.

Turning to B, cB(x) = (x+1)2(x−3) so the eigenvalues are λ1 =−1 and λ2 = 3. The
corresponding eigenspaces are Eλ1(B) = span{y1} and Eλ2(B) = span{y2} where

y1 =

 −1
2
1

 , y2 =

 5
6

−1


Here dim (Eλ1(B)) = 1 is smaller than the multiplicity of λ1, so the matrix B is not
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diagonalizable, again by Theorem 5.5.6. The fact that dim (Eλ1(B)) = 1 means that there is
no possibility of finding three linearly independent eigenvectors.

Complex Eigenvalues

All the matrices we have considered have had real eigenvalues. But this need not be the case:

The matrix A =

[
0 −1
1 0

]
has characteristic polynomial cA(x) = x2 + 1 which has no real roots.

Nonetheless, this matrix is diagonalizable; the only difference is that we must use a larger set of
scalars, the complex numbers. The basic properties of these numbers are outlined in Appendix ??.

Indeed, nearly everything we have done for real matrices can be done for complex matrices.
The methods are the same; the only difference is that the arithmetic is carried out with complex
numbers rather than real ones. For example, the gaussian algorithm works in exactly the same way
to solve systems of linear equations with complex coefficients, matrix multiplication is defined the
same way, and the matrix inversion algorithm works in the same way.

But the complex numbers are better than the real numbers in one respect: While there are
polynomials like x2+1 with real coefficients that have no real root, this problem does not arise with
the complex numbers: Every nonconstant polynomial with complex coefficients has a complex root,
and hence factors completely as a product of linear factors. This fact is known as the fundamental
theorem of algebra.12

Example 5.5.6

Diagonalize the matrix A =

[
0 −1
1 0

]
.

Solution. The characteristic polynomial of A is

cA(x) = det (xI −A) = x2 +1 = (x− i)(x+ i)

where i2 =−1. Hence the eigenvalues are λ1 = i and λ2 =−i, with corresponding

eigenvectors x1 =

[
1

−i

]
and x2 =

[
1
i

]
. Hence A is diagonalizable by the complex version

of Theorem 5.5.5, and the complex version of Theorem 5.5.3 shows that

P =
[

x1 x2
]
=

[
1 1

−i i

]
is invertible and P−1AP =

[
λ1 0
0 λ2

]
=

[
i 0
0 −i

]
. Of course,

this can be checked directly.

We shall return to complex linear algebra in Section ??.
12This was a famous open problem in 1799 when Gauss solved it at the age of 22 in his Ph.D. dissertation.
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Symmetric Matrices13

On the other hand, many of the applications of linear algebra involve a real matrix A and, while
A will have complex eigenvalues by the fundamental theorem of algebra, it is always of interest
to know when the eigenvalues are, in fact, real. While this can happen in a variety of ways, it
turns out to hold whenever A is symmetric. This important theorem will be used extensively later.
Surprisingly, the theory of complex eigenvalues can be used to prove this useful result about real
eigenvalues.

Let z denote the conjugate of a complex number z. If A is a complex matrix, the conjugate
matrix A is defined to be the matrix obtained from A by conjugating every entry. Thus, if A =

[
zi j
]
,

then A =
[
zi j
]
. For example,

If A =

[
−i+2 5

i 3+4i

]
then A =

[
i+2 5
−i 3−4i

]
Recall that z+w = z+w and zw = z w hold for all complex numbers z and w. It follows that if A
and B are two complex matrices, then

A+B = A+B, AB = A B and λA = λ A

hold for all complex scalars λ . These facts are used in the proof of the following theorem.

Theorem 5.5.7
Let A be a symmetric real matrix. If λ is any complex eigenvalue of A, then λ is real.14

Proof. Observe that A = A because A is real. If λ is an eigenvalue of A, we show that λ is real by
showing that λ = λ . Let x be a (possibly complex) eigenvector corresponding to λ , so that x 6= 0
and Ax = λx. Define c = xT x.

If we write x =


z1
z2
...

zn

 where the zi are complex numbers, we have

c = xT x = z1z1 + z2z2 + · · ·+ znzn = |z1|2 + |z2|2 + · · ·+ |zn|2

Thus c is a real number, and c > 0 because at least one of the zi 6= 0 (as x 6= 0). We show that
λ = λ by verifying that λc = λc. We have

λc = λ (xT x) = (λx)T x = (Ax)T x = xT AT x

At this point we use the hypothesis that A is symmetric and real. This means AT = A = A so we
continue the calculation:

13This discussion uses complex conjugation and absolute value. These topics are discussed in Appendix ??.
14This theorem was first proved in 1829 by the great French mathematician Augustin Louis Cauchy (1789–1857).
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λc = xT AT x = xT (A x) = xT (Ax) = xT (λx)
= xT (λ x)
= λxT x
= λc

as required.

The technique in the proof of Theorem 5.5.7 will be used again when we return to complex linear
algebra in Section ??.

Example 5.5.7

Verify Theorem 5.5.7 for every real, symmetric 2×2 matrix A.

Solution. If A =

[
a b
b c

]
we have cA(x) = x2 − (a+ c)x+(ac−b2), so the eigenvalues are

given by λ = 1
2 [(a+ c)±

√
(a+ c)2 −4(ac−b2)]. But here

(a+ c)2 −4(ac−b2) = (a− c)2 +4b2 ≥ 0

for any choice of a, b, and c. Hence, the eigenvalues are real numbers.

Exercises for 5.5

Exercise 5.5.1 By computing the trace, determi-
nant, and rank, show that A and B are not similar
in each case.

a. A =

[
1 2
2 1

]
, B =

[
1 1

−1 1

]

b. A =

[
3 1
2 −1

]
, B =

[
1 1
2 1

]

c. A =

[
2 1
1 −1

]
, B =

[
3 0
1 −1

]

d. A =

[
3 1

−1 2

]
, B =

[
2 −1
3 2

]

e. A =

 2 1 1
1 0 1
1 1 0

, B =

 1 −2 1
−2 4 −2
−3 6 −3



f. A =

 1 2 −3
1 −1 2
0 3 −5

, B =

 −2 1 3
6 −3 −9
0 0 0



b. traces = 2, ranks = 2, but det A =−5, det B =
−1

d. ranks = 2, determinants = 7, but tr A = 5,
tr B = 4

f. traces =−5, determinants = 0, but rank A= 2,
rank B = 1

Exercise 5.5.2 Show that


1 2 −1 0
2 0 1 1
1 1 0 −1
4 3 0 0

 and
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
1 −1 3 0

−1 0 1 1
0 −1 4 1
5 −1 −1 −4

 are not similar.

Exercise 5.5.3 If A ∼ B, show that:

AT ∼ BTa) A−1 ∼ B−1b)
rA ∼ rB for r in Rc) An ∼ Bn for n ≥ 1d)

b. If B = P−1AP, then B−1 = P−1A−1(P−1)−1 =
P−1A−1P.

Exercise 5.5.4 In each case, decide whether the
matrix A is diagonalizable. If so, find P such that
P−1AP is diagonal. 1 0 0

1 2 1
0 0 1

a)

 3 0 6
0 −3 0
5 0 2

b)

 3 1 6
2 1 0

−1 0 −3

c)

 4 0 0
0 2 2
2 3 1

d)

b. Yes, P =

 −1 0 6
0 1 0
1 0 5

, P−1AP = −3 0 0
0 −3 0
0 0 8


d. No, cA(x) = (x+1)(x−4)2 so λ = 4 has multi-

plicity 2. But dim (E4) = 1 so Theorem 5.5.6
applies.

Exercise 5.5.5 If A is invertible, show that AB is
similar to BA for all B.

Exercise 5.5.6 Show that the only matrix similar
to a scalar matrix A = rI, r in R, is A itself.

Exercise 5.5.7 Let λ be an eigenvalue of A with
corresponding eigenvector x. If B = P−1AP is similar
to A, show that P−1x is an eigenvector of B corre-
sponding to λ .

Exercise 5.5.8 If A∼B and A has any of the follow-
ing properties, show that B has the same property.

a. Idempotent, that is A2 = A.

b. Nilpotent, that is Ak = 0 for some k ≥ 1.

c. Invertible.

b. If B=P−1AP and Ak = 0, then Bk =(P−1AP)k =
P−1AkP = P−10P = 0.

Exercise 5.5.9 Let A denote an n×n upper trian-
gular matrix.

a. If all the main diagonal entries of A are dis-
tinct, show that A is diagonalizable.

b. If all the main diagonal entries of A are equal,
show that A is diagonalizable only if it is al-
ready diagonal.

c. Show that

 1 0 1
0 1 0
0 0 2

 is diagonalizable but

that

 1 1 0
0 1 0
0 0 2

 is not diagonalizable.

b. The eigenvalues of A are all equal (they are the
diagonal elements), so if P−1AP = D is diago-
nal, then D = λ I. Hence A = P−1(λ I)P = λ I.

Exercise 5.5.10 Let A be a diagonalizable n× n
matrix with eigenvalues λ1, λ2, . . . , λn (including
multiplicities). Show that:

a. det A = λ1λ2 · · ·λn

b. tr A = λ1 +λ2 + · · ·+λn

b. A is similar to D = diag (λ1, λ2, . . . , λn) so
(Theorem 5.5.1) tr A= tr D= λ1+λ2+ · · ·+λn.

Exercise 5.5.11 Given a polynomial p(x) = r0 +
r1x + · · ·+ rnxn and a square matrix A, the matrix
p(A) = r0I + r1A + · · ·+ rnAn is called the evalua-
tion of p(x) at A. Let B = P−1AP. Show that
p(B) = P−1 p(A)P for all polynomials p(x).

Exercise 5.5.12 Let P be an invertible n×n ma-
trix. If A is any n×n matrix, write TP(A) = P−1AP.
Verify that:
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TP(I) = Ia) TP(AB)= TP(A)TP(B)b)
TP(A + B) = TP(A) +
TP(B)

c) TP(rA) = rTP(A)d)

TP(Ak) = [TP(A)]k for k ≥ 1e)
If A is invertible, TP(A−1) = [TP(A)]−1.f)
If Q is invertible, TQ[TP(A)] = TPQ(A).g)

b. TP(A)TP(B) = (P−1AP)(P−1BP) = P−1(AB)P =
TP(AB).

Exercise 5.5.13

a. Show that two diagonalizable matrices are
similar if and only if they have the same eigen-
values with the same multiplicities.

b. If A is diagonalizable, show that A ∼ AT .

c. Show that A ∼ AT if A =

[
1 1
0 1

]
b. If A is diagonalizable, so is AT , and they have

the same eigenvalues. Use (a).

Exercise 5.5.14 If A is 2× 2 and diagonalizable,
show that C(A) = {X | XA = AX} has dimension 2 or
4. [Hint: If P−1AP = D, show that X is in C(A) if
and only if P−1XP is in C(D).]

Exercise 5.5.15 If A is diagonalizable and p(x) is
a polynomial such that p(λ ) = 0 for all eigenvalues
λ of A, show that p(A) = 0 (see Example 3.3.9). In
particular, show cA(A) = 0. [Remark: cA(A) = 0 for
all square matrices A—this is the Cayley-Hamilton
theorem, see Theorem ??.]

Exercise 5.5.16 Let A be n×n with n distinct real
eigenvalues. If AC = CA, show that C is diagonaliz-
able.

Exercise 5.5.17 Let A =

 0 a b
a 0 c
b c 0

 and

B =

 c a b
a b c
b c a

.

a. Show that x3 − (a2 + b2 + c2)x− 2abc has real
roots by considering A.

b. Show that a2 + b2 + c2 ≥ ab+ ac+ bc by con-
sidering B.

b. cB(x) = [x− (a+ b+ c)][x2 − k] where k = a2 +
b2 + c2 − [ab+ac+bc]. Use Theorem 5.5.7.

Exercise 5.5.18 Assume the 2×2 matrix A is sim-
ilar to an upper triangular matrix. If tr A= 0= tr A2,
show that A2 = 0.

Exercise 5.5.19 Show that A is similar to AT for all
2×2 matrices A. [Hint: Let A =

[
a b
c d

]
. If c = 0

treat the cases b = 0 and b 6= 0 separately. If c 6= 0,
reduce to the case c = 1 using Exercise 5.5.12(d).]

Exercise 5.5.20 Refer to Section ?? on linear re-
currences. Assume that the sequence x0, x1, x2, . . .
satisfies

xn+k = r0xn + r1xn+1 + · · ·+ rk−1xn+k−1

for all n ≥ 0. Define

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
r0 r1 r2 · · · rk−1

 , Vn =

 xn
xn+1

...
xn+k−1

 .

Then show that:
a. Vn = AnV0 for all n.

b. cA(x) = xk − rk−1xk−1 −·· ·− r1x− r0

c. If λ is an eigenvalue of A, the
eigenspace Eλ has dimension 1, and x =
(1, λ , λ 2, . . . , λ k−1)T is an eigenvector. [Hint:
Use cA(λ ) = 0 to show that Eλ = Rx.]

d. A is diagonalizable if and only if the eigenval-
ues of A are distinct. [Hint: See part (c) and
Theorem 5.5.4.]

e. If λ1, λ2, . . . , λk are distinct real eigenvalues,
there exist constants t1, t2, . . . , tk such that
xn = t1λ n

1 + · · ·+ tkλ n
k holds for all n. [Hint:

If D is diagonal with λ1, λ2, . . . , λk as the
main diagonal entries, show that An = PDnP−1

has entries that are linear combinations of
λ n

1 , λ n
2 , . . . , λ n

k .]

Exercise 5.5.21 Suppose A is 2×2 and A2 = 0. If
tr A 6= 0 show that A = 0.
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